About Face (3™ Edition)

Summary by Matt Ownby
11 April 2011

Disclaimer

e | use examples from our own product of what
not to do

 But | am as guilty as any one else
* So don't feel picked on o

Locations cited in presentation

 The locations cited in this presentation
correspond to the Kindle edition of “About Face
3" Edition”

Recognizing User Goals

e \We often think of our stories as tasks/activities.
We can lose sight of the overall goal when we
do this.

» Goals change very slowly over time.
Tasks/activities may change rapidly.

* Goal: travel to destination, Task: get on
airplane, drive car, walk (task depends on
available technology)

» See location 521 for another example of goal vs
task.

* Goals, not features, are the key to a product
success (location 630)

Implementation Model vs Mental
Model

Implementation model means designing the
user interface to conform to the way the
software is implemented “under the hood”

Mental model is how a user imagines or
visualizes how a product works

See location 655 first paragraph for description

Implementation model is very common in
software development

Implementation model wastes user's time!

Implementation Model

* |[mplementation model places undue burden on
user by forcing them to understand how a
product works under the hood.

* Next slide shows some examples from our own
stuff (not to pick on anyone hehehe)

Implementation Model

| Scan for rizky safbware in addition ta vinuses

| Allow user to add files and folders to Trusted Items list

CPU utilization when zcanning

Lo J High

User must understand the difference between
risky software and viruses in order to make a
decision here.

User must understand how the CPU utilization
setting works in order to make a decision.

Neither are user goals.
What is the user's goal?

Implementation Model

[v sze heurstics to scan for suspicious files

* In order to understand whether they want this
option, the user must first understand what it
means and how it works.

* This is not a user goal.
 What is the user's goal?

Implementation model continued

» Delivery methods is an example of the
Implementation model. Not a user goal to
understand this stuff. What is the user's goal?

Management Console

Wiew Tools Configure Window Help

J Layout: ICurrant 'l E JCor_e: ISLC*OWNB\"WZKS—Z

Q MNetwork, Yiew MHame |
S (@ SLCOWNBTW2K32[SLC- | (@) SLCOWNBYW2K3-2 (SLCOWNETW2KI-Z\LDMS ..
i @ Devices
3 Virtual 05 Hosts
[0 Oueries
[Scopes

[Configuration

Distribution

SErVers

E Content replication | Preferred -

Delivery Methods

k%, Directory Manager
a Distribution Packages

E LaunchPad Link Manager

_ Manage Scripts
4

() Favorites

Mame &

E| [My delivery methods (5] all delivery methads
£ Configuration : 118l Policy-supported push | [My delivery methads
[:| Public delivery methods

f} Administration

QDistnbutiUn

o — -l Multicast (cache only)
(5] Public delivery methods
) Reparting | Manitaring -2 All defivery methods

rdbgsetup_x..

6 Security and Compliance

{2) Thin client

"'5-‘_ Data Prokection & Delivery methads

0./0 item(s] selected |User: SLC-OWNEY W 2K 3-2mownby 4

'@ Updates are ready for your computer lz‘
Click here to download these updates.

disean| [([@ @ |[{& 1aNDesks Managem.. | o

T N & 10:50 Am

Mental Model

 Mental model is how the user imagines that
something works.

 Example: electronic device uses Alternating
Current but we imagine that power just flows
like water through the cord.

 Example: when we go to a movie, we don't
understand how the projector works. We just
imagine that it throws the picture on the screen.
Same with when we watch TV.

Follow the mental model

* Most software follows the implementation model

e Our interfaces should follow the user's
mental model, not our implementation model.

 See location 696 in book

Beginners, Experts, and
Intermediates

Most users are intermediates
Beginners quickly become intermediates

Software should be optimized for the
“perpetual” intermediate user

Experts include users who want shortcut keys
and enjoy knowing how things work “under the
hood”. Unless people use the software very
often, they will not be experts.

LDMS tends to be optimized toward experts,
not intermediates. (see screenshot on next
slide)

Because our software is optimized
for experts, we bolt on “training
wheels” to help beginners. The
intermediate user is forgotten.

ANDesk® Management Console

Edit Yiew Tools Configure Window Help Getting Started
ekting Starte

J Layout: ICurrent »d
G MNetwork 'iegw Name LANDESK

@ sica SO0FTWARE

Distribution .
Devices

i Content replication | Preferred % Wirtual 05 Hosts
SEIVErs Queries

#a Delivery Methods Scopes
Configuration

Welcome

This wizard helps you configure your LANDesk Management software to do
the following:

Directory Manager » Schedule tasks on your managed devices
® Manage Intel(R) vPro and IPM| devices
» Remote control managed devices

* See domain users in the Web console

Distribution Packages

E], LaunchPad Link Manager

Manage Scripts
4

(_JIFavarites k;) - % &3 | C 0

= % Delivery methods Mame &
E| L My delivery methods Lo Al deliver

£+ Configuration o 18 Policy-supparted push | 51 My delive

Push (=1 Public del

Policy

@l Multicast {cache onky)

— |12 Public delivery methods Velsome Scheduler BMC
{0 Reporting { Manitaring -] Al delivery methads -

s Click Next to proceed or click Exit to close the wizard.

3 Administration

| Distribution

Power managernent

) security and Compliance I~ Eiont s this wizan

<<Back Mexts» | Exit |
%, DataProkection #4 Delivery methods

|04 tems) selected |User: SLC-OWNBYW2KI 2smonwnby 2

{80 Thin Client

l[;'startl J @ e JI LANDesk® Managem... J o

2 @ 1055 AM

Reducing excise (waste)

* Navigation is excise (location 3004)

* Reduce the number of places to go (location
3064)

e See example on next slide

A random example of navigational
excise. Nested dialogs.

gtonﬁgure LANDesk Antivirus settings

D - Mame Owner I Last saved by I Last =:
D SLC-OWANBYWE .. Antiviiuz zettings 22 Public User SLC-0MwM B W 2K 3-2hmownby 478720 _ ||:||5|
Edit...

_IB

" Exclude netwark paths
Cloze

LCopy.. -
E— e 4: __x|
Delete
Enable real-time file pratection
V¥ Show real-time meszages on client: INWB}'S j &I
" Allow uzer to dizable realime zcanning for up to |1D 3: minutes Use selected |
Y

le types to scan _’I
* Scan all file types

7 Scan jnfectable filez only Canfigure... |

L A er j
Use heuristics to scan for suzpicious files !

Hude the following files. folders, and file extensions:

sth | Tupe |

or agent puzh

Add excluded path x| [—

require client to have an Internet ar
Type

 File

& Folder

7 Extenzion

Add... C:%Program Files\MyPrograms!
ZTEMPZN
ZSYSTEMDRIVE 2\D ataFaldert

Object: I

Save Cancel
|| Browse... |
Inzert variable... |
ok I

Help I

e

|User: SLC-OWHEBY W 2K 3- 2\ mownby

L]

Cancel | Help |

l[j'Startl J @ & J I LANDesk® Managem... /;T Configure LANDesk Antiv. ., | w excess_navigation.bmp ..., J o | = @ 11:03 &M

Designing Good Behavior

Imagine that your product is an extremely
considerate human being

Design its behavior accordingly
Anticipate human needs
Don't ask a lot of questions

Fail gracefully

ake responsibility (don't blame the user)
Know when to bend the rules

Designing smart products

* Put idle CPU cycles to work

* Most people pause while typing to think or do
something else. These idle cycles can be used
to make their life easier. For example, in my
data protection configuration screen, | use idle
cycles to test whether the settings the user has
already typed in are correct.

« Remember settings

Metaphors, |ldioms

* Avoid designing your product to conform to a
real-world metaphor. Example is using a phone
icon to indicate networking, like Windows 95
did. Real-world metaphors often do not
represent the ideal way to get work done, just
the current best way. They become obsolete.

* |dioms don't conform to any real world model
but are easily learned and incredibly effective.
Example is using a mouse (clicking, dragging,
etc).

UNDO

User mental models of mistakes

Users generally don’t believe, or at least don’t want to believe, that they make mistakes. This is
another way of saying that the persona’s mental model typically doesn’t include error on his part.
Following a persona’s mental model means absolving him of blame. The implementation model,
however, is based on an error-free CPU. Following the implementation model means proposing that
all culpability must rest with the user. Thus, most software assumes that it is blameless, and any
problems are purely the fault of the user.

The solution is for the user-interface designer to completely abandon the idea that the user can make
a mistake — meaning that everything the user does is something he or she considers to be valid and
reasonable. Most people don’t like to admit to mistakes in their own minds, so the program shouldn’t
contradict this mindset in its interactions with users.

Files and Save

Every running application exists in two places at once: in memory and on disk. The same is true of
every open file. For the time being, this is a necessary state of affairs — our technology has different
mechanisms for accessing data in a responsive way (memory) and storing that data for future use
(disks). This, however, is not what most people think is going on. Most of our mental models (aside
from programmers) are of a single document that we are directly creating and making changes to.

When that Save Changes dialog box, shown in Figure 17-1, opens, users suppress a twinge of fear
and confusion and click the Yes button out of habit. A dialog box that is always answered the same
way is a redundant dialog box that should be eliminated.

Microsoft Office Word &

! E Do you want to save the changes to "084111 <ha7_dmc.doc™?

(e) [] [Lcance

Figure 17-1 This is the question Word asks when you close a file after you have
edited it. This dialog is a result of the programmer inflicting the implementation-
model of the disk file system on the hapless user. This dialog is so unexpected by
new users that they often choose No inadvertently.

The Save Changes dialog box is based on a poor assumption: That saving and not saving are equally
probable behaviors. The dialog gives equal weight to these two options even though the Yes button is
clicked orders of magnitude more frequently than the No button. As we discussed in Chapter 10, this
is a case of confusing possibility and probability. The user might say no, but the user will almost
always say yes. Mom is thinking, “If I didn’t want those changes, why would I have closed the
document with them in there?” To her, the question is absurd.

Save everything

Automatically save everything as versions

Make it easy to revert to previous versions

Make it easy to abandon c

Make it easy to compare c
versions

Disk space is cheap

nanges

nanges between

Good Ul idioms to use

 Toolbars
e Tooltips

* Verbose modeless feedback (text that gives
hints about what's going on that doesn't
interfere with the user)

* These are highly recommended by the book as
effective visual idioms. User only has to learn
how to use them once and they instantly
become useful thereafter.

Dialogs

* Dialogs should be thought of as going into
another room in your house to accomplish a
task.

» Dialogs are heavily overused in Ul today, mainly
because they are so easy to whip up.

* Imagine yourself doing work at a table at home.
Ask yourself, “Would | go into another room to
accomplish this particular task?” If yes, then
use a dialog box. If not, don't. :)

Errors, alerts, and confirmation

* These three dialog boxes are “the most abused

components of modern GUI design.” (location
6502)

Error dialogs

* Typically “poorly written, unhelpful, rude, and
worst of all, never in time to prevent the error in
the first place.” (location 6505)

» “Users never want error messages, they want to
avoid the consequences of making errors.”

* “Most error message boxes are informing users
of the inability of the program to work flexibly
and are an admission of real stupidity on the
application's part.” (location 6516)

* People hate error messages.

Error messages continued

Fﬂnrd -0-@rain

It's obvious From wour actions that you don't
" know a thing about computers or software,

|| am not worthy | | Please kil me now | lLﬂi e 2o0 i ;n';ll.;[h]
can figure

Figure 25-1 No matter how nicely your error messages are phrased, this is how
they will be interpreted.

More on error messages

If we asked an assistant to enter a client’s phone contact information into our Rolodex, and
neglected to mention the area code, he would accept it anyway, expecting that the area code would
arrive before its absence was critical. Alternatively, he could look the address up in a directory. Let’s
say that the client is in Los Angeles so the directory is ambiguous: The area code could be either 213
or 310. If our human assistant rushed into the office in a panic shouting “Stop what you’re doing!
This client’s area code is ambiguous!” we’d be sorely tempted to fire him and hire somebody with a
greater-than-room-temperature 1Q. Why should software be any different? A human might write
213/3107 into the area code field in this case. The next time we call that client, we’ll have to
determine which area code is correct, but in the meantime, life can go on.

Eliminating error messages

* Error messages should be eliminated because
they don't work (they don't prevent the error)

 Make it impossible for users to make errors.

» Give positive feedback when things go right and
be silent when things go wrong.

» Users get humiliated when software tells them
they have failed.

Alerts

- Fing | Repiace | GoTo ESS : —
' ~Microsoft Office Word

Fird what: | korron it
\ 1) Word has finished searching the dooumsnt. The search item was not found.

[] _.
(ipes) (ot] (_coms]

[] Highlight o tems found in;

Figure 25-4 A typical alert dialog box. It is unnecessary, inappropriate, and stops
the proceedings with idiocy. Word has finished searching the document. Should
reporting that fact be a different facility than the search mechanism itself? If not,

why does it use a different dialog?

Alerts

* Main problem with alert dialogs is they take a
user into a “different room”.

» Keeping the user informed is important, but it
should be done as modeless visual feedback
that doesn't require the user to press OK to

keep going.

Alerts

W Airsot

[AirSetDesktopSyne &
.| [T e—

Sync

oK

pev. airget. com

Figure 25-5 This dialog, from AirSet Desktop Sync, is unnecessarily obsequious.
We tell it to synchronize and are promptly stopped in our tracks by this important
message. Do we really need the program to waste our time demanding
recognition that it managed to do its job?

Confirmation Dialogs

* Also known as “passing the buck” on to the user

* Application doesn't want to be responsible for
its actions

 May be used to avoid implementing robust undo
system

Confirmations pass the buck to users. Users trust the application to do its job, and the application
should both do it and ensure that it does it right. The proper solution is to make the action easily
reversible and provide enough modeless feedback so that users are not taken off-guard.

Confirmation Dialog (location 6658)

When an application does not feel confident about its actions, it often asks a user for approval with
a dialog box, like the one shown in Figure 25-6. This is called a confirmation. Sometimes a
confirmation is offered because the application second-guesses one of the user’s actions. Sometimes
the program feels that is not competent to make a decision it faces and uses a confirmation to give
the user the choice instead. Confirmations always come from the program and never from the user.
This means that they are often a reflection of the implementation model and are not representative
of user goals.

(Confirm File Delete &

y Are you sure you want to send “Inflection’ to the Recyde Bin?

[ves J[to]

Figure 25-6 Every time we delete a file in Windows, we get this confirmation
dialog box asking if we're sure. Yes, we're sure. We're always sure. And if we're
wrong, we expect Windows to be able to recover the file for us. Windows lives up
to that expectation with its Recycle Bin. So, why does it still issue the confirma-
tion message? When a confirmation box is issued routinely, users get used to
approving it routinely. So, when it eventually reports an impending disaster to the
user, he goes ahead and approves it anyway, because it is routine. Do your users
a favor and never create another confirmation dialog box.

Revealing the implementation model to users is a surefire way to create an unpleasant and inferior
product.

\When to use confirmations

The dialog that cried “"Wolf!”

Confirmations illustrate an interesting quirk of human behavior: They only work when they are
unexpected. That doesn’t sound remarkable until you examine it in context. If confirmations are
offered in routine places, users quickly become inured to them and routinely dismiss them without a
glance. Dismissing confirmations thus becomes as routine as issuing them. If, at some point, a truly
unexpected and dangerous situation arises — one that should be brought to a user’s attention — he
will, by rote, dismiss the confirmation, exactly because it has become routine. Like the fable of the
boy who cried “Wolf,” when there is finally real danger, the confirmation box won’t work because it
cried too many times when there was no danger.

For confirmation dialog boxes to work, they must only appear when a user will almost definitely
click the No or Cancel button, and they should never appear when a user is likely to click the Yes or
OK button. Seen from this perspective, they look rather pointless, don’t they?

Eliminating confirmations

Do, don't ask.
e Make all actions reversible.

* Provide modeless feedback to help users avoid
mistakes

rﬁdahe Photoshop

The irnage is larger than the papar’s printable area
some clipping will occur.

 Proceed || Cancel |

Figure 25-7 This dialog provides too little help too late. What if the program
could display the printable region right in the main interface as dotted guides?
There’s no reason for users to be subjected to dialogs like these.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

